

Tire Deformation Monitoring Sensor for Advanced Driver-Assistance Systems

<u>István Bársony¹, Tamás Dózsa^{2,3}, János Radó¹, Attila Nagy¹, Ferenc Braun¹,</u> Ernő Simonyi³, Gábor Battistig^{1,4}, Alexandros Soumelidis³, Péter Kovács², János Volk^{1,*}

¹HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; ²Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary ³Institute for Computer Science and Control, 1111 Budapest, Hungary; ⁴Department of Electrical Engineering, University of Debrecen, Debrecen H-4026, Hungary * Correspondence: volk.janos@ek.hun-ren.hu

Introduction

Advanced Driver-Assistance Systems (ADAS), especially in the field of autonomous driving, are gathering more and more information on the move to increase efficiency, reduce emissions, and increase safety. Today, a whole range of sensors are installed at various points in the car to monitor the vehicle movements and the environment. However, the interaction between the tire and the road surface at critical moments, such as a vehicle skidding, can only be detected indirectly through lateral acceleration and turning of the vehicle. Our goal is to collect more direct information on tire traction for each tire individually, using a three-dimensional (3D) piezoresistive force sensor placed on the inner wall of the tire. This allows real-time evaluation of wheel forces, automatic road surface detection, and early detection of skidding events.

Methodology

Used sensor: a 3D piezoresistive MEMS force sensor with 4 strain-sensitive resistors placed around a 3D micromachined Si beam (joystick) on a SOI-based device membrane [1].

- By collecting the 4 voltage-divided signals, all three components of the load force applied on microbeam can be calculated for a bare sensor chip.
- However, in highly deforming environments, such as vehicle tire, protective packaging with high resistance is needed.
- The packaged sensor is placed on the inside of the tire, near the most curved area, to maximize sensitivity.
- The crosstalk between the voltage dividers caused by the packaging requires sophisticated evaluation models.
- In this work, data-driven machine learning algorithm with variable projection layer and adaptive Hermite functions [2] are used for data analysis.

Si-based 3-D force sensor front (left) and back (right)

Components of the integrated tire-deformation monitoring system

Packaging scheme to protect the embedded sensor while preserving sensitivity

Analytical expressions for bare force sensor chip (left) vs. data-driven machine learning for packaged sensor signals (right)

Wheel force estimation

- Aim of the study: to calibrate the tire deformation sensor with a standard wheel force sensor.
- Tests were performed on constant speed (~25 km/h) slalom tracks, straight sections, as well as with accelerations and decelerations using Kistler RoaDyn S625 reference wheel force sensor mounted on a Mercedes-Benz CLA test vehicle.

Road surface defect detection

- Aim of the study: tire sensor for automatic detection of road surface anomalies.
- Ground-truth data was collected on two types of roads in Budapest: good-quality road with no visually detectable defects (normal) and poor-quality road with potholes and manhole covers (abnormal) \rightarrow binary classification.

Kick-plate vehicle test

- Aim of the study: demonstrate the capability of the tire deformation monitoring system in the early detection of skidding events.
- Kick-plate vehicle tests were carried out using synchronized signal acquisition from tire sensors and various standard sensors mounted on the test

- Tests were repeated at different tire pressures (p=1.5, 1.8, 2.0, 2.2 bar).
- The collected tire sensor data was first segmented into individual revolutions and then used to train them for the average reference forces for each component separately.
- A second neural network was applied to perform smoothing.
- Adhesion coefficient of friction was also calculated: $\mu =$

Wheel force reference sensor on the test vehicle

Despite the limited size of the training set (~2000 revolutions), the algorithm provides a fairly good agreement with the reference values. Analytic, model-based, and standard data-driven machine learning approaches were compared using a set of 413/103 measurement segments for training/test [3].

scores with optimal thresholds before turn recorded on normal (top) and (top) and after (bottom) transformation abnormal (bottom) road

Mean Accuracy Classifier Highest Lowest 79.81%Threshold 86.92% 90.38%SVM 93.65%96.15%92.31%90.38%93.85%96.15%Threshold Hermite 96.13%94.23%FCNN 99.02%96.52%93.20%CNN 97.12%97.68%VP-NET 99.04%96.12%

Anomalies on the 'abnormal road'

- Accuracy of the compared binary classification schemes
- Hermite representation increases the reliability of both analytic and neural-network-based evaluation (Threshold Hermite: ~93.9 % and VP-NET: ~97.7%).

car (Nissan Leaf).

Tire deformation sensor in action

Recorded signals of the standard automotive sensors (upper panel), and of the four half-bridges of the tire sensor. Red region shows the moment of plate excitation.

Instead of the wheel forces adhesion friction coefficient (μ) could provide a simple and valuable indicator for ADAS.

Conclusions

- Direct, real-time monitoring of the road-tire contact condition is feasible with an inexpensive 3D MEMS force sensor.
- Analogous operation proven by the calibration of standard wheel force sensor in use \rightarrow can replace the expensive wheel force gauge.
- Potential applications of the tire sensor:
 - driver assistance for early warning of skidding Ο
 - load imbalance prediction, e.g. for trucks Ο
 - automatic road surface classification Ο
 - real-time tire condition assessment \bigcirc
- Highly interdisciplinary approach requiring concerted collaboration of sensor system developers, car makers, tire manufacturers, power train and deep learning experts!

- VP-NET, as a low-demand algorithm, has proven compatibility with low-cost, low-capacity hardware (e.g. STM32 F411RE) enabling real-time detection for standard cars and trucks.
- Though the detailed evaluation of the signals is still in progress, the characteristic features of the tire sensor signals bodes well for slip detection.

Acknowledgement

- The authors thank the Department of Innovative Vehicles and Materials, John von Neumann University for providing a test car equipped with wheel force sensors.
- This research was funded by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021 funding scheme, grant number TKP2021-NVA-03.
- Project no. C1748701 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the NVKDP-2021 funding scheme.
- The research was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

[1] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, "CMOS integrated tactile sensor array by porous Si bulk micromachining," Sensors and Actuators A: Physical, vol. 142, no. 1, pp. 192–195, Mar. 2008.

[2] P. Kovács, G. Bognár, C. Huber, and M. Huemer, "VPNET: Variable Projection Networks," Int. J. Neur. Syst., vol. 32, no. 01, 2150054, 2022.

[3] T. Dozsa, J. Rado, J. Volk, A. Kisari, A. Soumelidis, and P. Kovacs, "Road Abnormality Detection Using Piezoresistive Force Sensors and Adaptive Signal Models," IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022.