IEEE Transactions on Automatic Control (Vol. 69, Iss. 12) / 21 June 2024
Data-Driven Dissipativity Analysis of Linear Parameter-Varying Systems
In this article, we derive direct data-driven dissipativity analysis methods for linear parameter-varying (LPV) systems using a single sequence of input-scheduling-output data. By means of constructing a semidefinite program subject to linear matrix inequality constraints based on this data-dictionary, direct data-driven verification of (Q,S,R)-type of dissipativity properties of the data-generating LPV system is achieved. Multiple implementation methods are proposed to achieve efficient computational properties and to even exploit structural information on the scheduling, e.g., rate bounds. The effectiveness and tradeoffs of the proposed methodologies are shown in simulation studies of academic and physically realistic examples.