Skip to main content
Home
ENHU

Main navigation

  • Discover
    • News
    • Events
  • Research & development
    • Areas of application
    • Research topics
  • Resources
    • Publications
    • Lead researchers
  • Partners
    • Consortium members
    • International partners
    • Industry contacts
    • University contacts
  1. Home
  2. Publications
IFAC-PapersOnLine, Volume 54, Issue 8 / Sept 2021

Data-driven linear parameter-varying modelling of the steering dynamics of an autonomous car

Széchenyi Plusz RRF

Developing automatic driving solutions and driver support systems requires accurate vehicle specific models to describe and predict the associated motion dynamics of the vehicle. Despite of the mature understanding of ideal vehicle dynamics, which are inherently nonlinear, modern cars are equipped with a wide array of digital and mechatronic components that are difficult to model. Furthermore, due to manufacturing, each car has its personal motion characteristics which change over time. Hence, it is important to develop data-driven modelling methods that are capable to capture from data all relevant aspects of vehicle dynamics in a model that is directly utilisable for control. In this paper, we show how Linear Parameter-Varying (LPV) modelling and system identification can be applied to reliably capture personalised model of the steering system of an autonomous car based on measured data. Compared to other nonlinear identification techniques, the obtained LPV model is directly utilisable for powerful controller synthesis methods of the LPV framework.

Url
https://doi.org/10.1016/j.ifacol.2021.08.575
Authors
Rödönyi, G.
Tóth, R.
Pup, D.
Kisari, Á.
Vígh, Zs.
Kőrös, P.
Bokor, J.
Institutes

Kapcsolat

Prof. Dr. Péter Gáspár

Hungary, H-1111 Budapest,
Kende u. 13-17.
+36 1 279 6000
autonom@nemzetilabor.hu

© 2020-2021 National Laboratory for Autonomous Systems, Budapest