20th IFAC Symposium on System Identification (SYSID) / 17-19 July 2024
Learning Reduced-Order Linear Parameter-Varying Models of Nonlinear Systems
In this paper, we consider the learning of a Reduced-Order Linear Parameter-Varying Model (ROLPVM) of a nonlinear dynamical system based on data. This is achieved by a two-step procedure. In the first step, we learn a projection to a lower dimensional state-space. In step two, an LPV model is learned on the reduced-order state-space using a novel, efficient parameterization in terms of neural networks. The improved modeling accuracy of the method compared to an existing method is demonstrated by simulation examples.