IEEE Transactions on Pattern Analysis and Machine Intelligence
Marginalizing sample consensus
A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On a number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are available at https://github.com/danini/magsac.