Parameter uncertainty analysis in precise pointing control of flexible spacecraft
This article focuses on the validation of a classical PID controller scheme for flexible spacecraft with regards to the effect of parameter uncertainty on system stability and pointing precision. A high-fidelity simulation environment with external disturbances was built in Simulink using a control-oriented model of an Earth-observing satellite with a flexible appendage and on-board microvibration sources in orbit around the planet. Then, a PID control loop was designed with sensor dynamics, time delay behaviour, and a smooth trajectory generator. After declaring the natural frequencies, damping ratio, and rotation angle of the appendage, as well as the propellant tank mass to be uncertain, two worst-case scenarios were identified. Comparing the response of worst-case systems with nominal settings, only a minor drop has been found in the phase margins, with little to no difference in the pointing errors (smaller than ±2 arcsec for both roll and pitch).